领先一步
VMware 提供培训和认证,助您加速进步。
了解更多RabbitMQ 是一个基于 高级消息队列协议 (AMQP) 的强大消息中间件。由于 AMQP 规范的通用性,可以轻松地从包括 Python 在内的许多平台连接到它。在本篇博文中,我们将
顺便说一句
本篇博文中编写的代码仅用于演示目的。请勿依赖这些算法作为财务建议。闲话不多说,让我们开始写代码吧!
import pickle
import random
import time
class Ticker(object):
def __init__(self, publisher, qname):
self.publisher = publisher
# This quickly creates four random stock symbols
chars = range(ord("A"), ord("Z")+1)
def random_letter(): return chr(random.choice(chars))
self.stock_symbols = [random_letter()+random_letter()+random_letter() for i in range(4)]
self.last_quote = {}
self.counter = 0
self.time_format = "%a, %d %b %Y %H:%M:%S +0000"
self.qname = qname
def get_quote(self):
symbol = random.choice(self.stock_symbols)
if symbol in self.last_quote:
previous_quote = self.last_quote[symbol]
new_quote = random.uniform(0.9*previous_quote, 1.1*previous_quote)
if abs(new_quote) - 0 < 1.0:
new_quote = 1.0
self.last_quote[symbol] = new_quote
else:
new_quote = random.uniform(10.0, 250.0)
self.last_quote[symbol] = new_quote
self.counter += 1
return (symbol, self.last_quote[symbol], time.gmtime(), self.counter)
def monitor(self):
while True:
quote = self.get_quote()
print("New quote is %s" % str(quote))
self.publisher.publish(pickle.dumps((quote[0], quote[1], time.strftime(self.time_format, quote[2]), quote[3])), routing_key="")
secs = random.uniform(0.1, 0.5)
#print("Sleeping %s seconds..." % secs)
time.sleep(secs)
此应用程序随机创建四个股票代码,然后开始创建行情。它最初在 10.0 和 250.0 之间选择一个随机值,然后将价格在先前价格的 90% 到 110% 之间随机调整。然后,它在进入下一个行情之前随机等待 0.1 到 0.5 秒。此代码设计的一个重要部分是发布到 AMQP 代理与股票行情程序解耦。相反,它期望在构造时注入一个发布者服务。
重要的是要注意我们正在使用 pickle 来序列化股票行情数据元组。在 AMQP 中,消息的正文只是一系列字节。存储什么以及如何序列化不属于规范的一部分,而必须在发送方和接收方之间达成一致。在我们的情况下,发布者和订阅者都同意它包含一个 pickled 元组。
from amqplib import client_0_8 as amqp
class PyAmqpLibPublisher(object):
def __init__(self, exchange_name):
self.exchange_name = exchange_name
self.queue_exists = False
def publish(self, message, routing_key):
conn = amqp.Connection(host="127.0.0.1", userid="guest", password="guest", virtual_host="/", insist=False)
ch = conn.channel()
ch.exchange_declare(exchange=self.exchange_name, type="fanout", durable=False, auto_delete=False)
msg = amqp.Message(message)
msg.properties["content_type"] = "text/plain"
msg.properties["delivery_mode"] = 2
ch.basic_publish(exchange=self.exchange_name,
routing_key=routing_key,
msg=msg)
ch.close()
conn.close()
这里要特别注意的一点是,声明的交换机类型为“fanout”。这意味着绑定到它的每个队列都将收到消息的副本,而无需在代理端进行昂贵的处理。
您可能会想,为什么正文的 content_type 是“text/plain”,考虑到它是一个序列化的消息。这是因为 Python 的 pickle 库以 ASCII 编码格式编码数据,该格式可以用任何工具查看而不会导致奇怪的行为。
import pickle
import random
import uuid
class Buyer(object):
def __init__(self, client, qname, trend=5):
self.holdings = {}
self.cash = 100000.0
self.history = {}
self.qname = qname
self.client = client
self.trend = trend
self.qname = uuid.uuid4().hex
def decide_whether_to_buy_or_sell(self, quote):
symbol, price, date, counter = quote
#print "Thinking about whether to buy or sell %s at %s" % (symbol, price)
if symbol not in self.history:
self.history[symbol] = [price]
else:
self.history[symbol].append(price)
if len(self.history[symbol]) >= self.trend:
price_low = min(self.history[symbol][-self.trend:])
price_max = max(self.history[symbol][-self.trend:])
price_avg = sum(self.history[symbol][-self.trend:])/self.trend
#print "Recent history of %s is %s" % (symbol, self.history[symbol][-self.trend:])
else:
price_low, price_max, price_avg = (-1, -1, -1)
print "%s quotes until we start deciding whether to buy or sell %s" % (self.trend - len(self.history[symbol]), symbol)
#print "Recent history of %s is %s" % (symbol, self.history[symbol])
if price_low == -1: return
#print "Trending minimum/avg/max of %s is %s-%s-%s" % (symbol, price_low, price_avg, price_max)
#for symbol in self.holdings.keys():
# print "self.history[symbol][-1] = %s" % self.history[symbol][-1]
# print "self.holdings[symbol][0] = %s" % self.holdings[symbol][0]
# print "Value of %s is %s" % (symbol, float(self.holdings[symbol][0])*self.history[symbol][-1])
value = sum([self.holdings[symbol][0]*self.history[symbol][-1] for symbol in self.holdings.keys()])
print "Net worth is %s + %s = %s" % (self.cash, value, self.cash + value)
if symbol not in self.holdings:
if price < 1.01*price_low:
shares_to_buy = random.choice([10, 15, 20, 25, 30])
print "I don't own any %s yet, and the price is below the trending minimum of %s so I'm buying %s shares." % (symbol, price_low, shares_to_buy)
cost = shares_to_buy * price
print "Cost is %s, cash is %s" % (cost, self.cash)
if cost < self.cash:
self.holdings[symbol] = (shares_to_buy, price, cost)
self.cash -= cost
print "Cash is now %s" % self.cash
else:
print "Unfortunately, I don't have enough cash at this time."
else:
if price > self.holdings[symbol][1] and price > 0.99*price_max:
print "+++++++ Price of %s is higher than my holdings, so I'm going to sell!" % symbol
sale_value = self.holdings[symbol][0] * price
print "Sale value is %s" % sale_value
print "Holdings value is %s" % self.holdings[symbol][2]
print "Total net is %s" % (sale_value - self.holdings[symbol][2])
self.cash += sale_value
print "Cash is now %s" % self.cash
del self.holdings[symbol]
def handle_pyamqplib_delivery(self, msg):
self.handle(msg.delivery_info["channel"], msg.delivery_info["delivery_tag"], msg.body)
def handle(self, ch, delivery_tag, body):
quote = pickle.loads(body)
#print "New price for %s => %s at %s" % quote
ch.basic_ack(delivery_tag = delivery_tag)
print "Received message %s" % quote[3]
self.decide_whether_to_buy_or_sell(quote)
def monitor(self):
self.client.monitor(self.qname, self.handle_pyamqplib_delivery)
此客户端将买卖股票的策略很好地隔离了从 RabbitMQ 接收消息的机制。
def monitor(self, qname, callback):
conn = amqp.Connection(host="127.0.0.1", userid="guest", password="guest")
ch = conn.channel()
if not self.queue_exists:
ch.queue_declare(queue=qname, durable=False, exclusive=False, auto_delete=False)
ch.queue_bind(queue=qname, exchange=self.exchange_name)
print "Binding queue %s to exchange %s" % (qname, self.exchange_name)
#ch.queue_bind(queue=qname, exchange=self.exchange_name, routing_key=qname)
self.queue_exists = True
ch.basic_consume(callback=callback, queue=qname)
while True:
ch.wait()
print 'Close reason:', conn.connection_close
这展示了连接到我们的 RabbitMQ 代理,声明队列,将其绑定到 fanout 交换机,然后注册回调的基本模式。
但是,让我们不要过于纠结于如何让这个算法在挑选赢家和输家方面做得更好。相反,让我们认识到这使得任何金融公司都可以通过创建唯一的队列,绑定到股票系统的 fanout 交换机,然后编写自己的金融决策算法来轻松订阅股票行情。
关键点是,从 py-amqplib 迁移到 pika 其实非常容易。基于 AMQP 的方法是相同的,并且底层概念也是相同的。让我们看看使用 pika 编写一个替代的 AMQP 服务。
import pika
class PikaPublisher(object):
def __init__(self, exchange_name):
self.exchange_name = exchange_name
self.queue_exists = False
def publish(self, message, routing_key):
conn = pika.AsyncoreConnection(pika.ConnectionParameters(
'127.0.0.1',
credentials=pika.PlainCredentials('guest', 'guest')))
ch = conn.channel()
ch.exchange_declare(exchange=self.exchange_name, type="fanout", durable=False, auto_delete=False)
ch.basic_publish(exchange=self.exchange_name,
routing_key=routing_key,
body=message,
properties=pika.BasicProperties(
content_type = "text/plain",
delivery_mode = 2, # persistent
),
block_on_flow_control = True)
ch.close()
conn.close()
def monitor(self, qname, callback):
conn = pika.AsyncoreConnection(pika.ConnectionParameters(
'127.0.0.1',
credentials=pika.PlainCredentials('guest', 'guest')))
ch = conn.channel()
if not self.queue_exists:
ch.queue_declare(queue=qname, durable=False, exclusive=False, auto_delete=False)
ch.queue_bind(queue=qname, exchange=self.exchange_name)
print "Binding queue %s to exchange %s" % (qname, self.exchange_name)
#ch.queue_bind(queue=qname, exchange=self.exchange_name, routing_key=qname)
self.queue_exists = True
ch.basic_consume(callback, queue=qname)
pika.asyncore_loop()
print 'Close reason:', conn.connection_close
这与前面展示的另一个服务非常相似。创建连接略有不同,但包含相同的 प्रकारचे数据,如 broker 的主机,以及 username 和 password。 basic_publish 略有不同,消息及其属性被放在方法调用内部。py-amqplib 以稍有不同的结构声明整个消息及其属性,然后将其作为一个参数传递给 basic_publish。关于规范的好处是知道所有重要的部分都在这两个库中。
与 py-amqplib 相比,pika 支持不同的等待机制。py-amqplib 具有阻塞等待,而 pika 同时提供阻塞机制和使用 Python 的 asyncore 工具 进行异步操作的机制。我们可以在关于 RabbitMQ 和 Python 的未来博客文章中探讨这一点。
这些库的回调方法签名略有不同。我们需要更新我们的经纪客户端以适当地处理它。
def handle_pyamqplib_delivery(self, msg):
self.handle(msg.delivery_info["channel"], msg.delivery_info["delivery_tag"], msg.body)
将此与 pika 的回调方法签名进行比较。
def handle_pika_delivery(self, ch, method, header, body):
self.handle(ch, delivery_tag, body)
它们非常接近。重要的部分都在那里。区别在于 pika 将消息的各个部分分开,而 py-amqplib 将它们全部组合在一个类中。这就是为什么回调方法与提取我们消息正文的实际方法之间存在解耦。通过提取必要的部分,可以轻松地在这些库之间切换,而无需重写我们的买卖算法。
########################################
# To run this demo using py-amqplib,
# uncomment this block, and comment out
# the next block.
########################################
#from amqplib_client import *
#publisher = PyAmqpLibPublisher(exchange_name="my_exchange")
########################################
# To run this demo using pika,
# uncomment this block, and comment out
# the previous block
########################################
from pika_client import *
publisher = PikaPublisher(exchange_name="my_exchange")
########################################
# This part doesn't have to change
########################################
from ticker_system import *
ticker = Ticker(publisher, "")
ticker.monitor()
这个运行器可以在运行 py-amqplib 或 pika 版本的股票行情系统之间切换。现在我们只需要一个运行器来运行经纪服务。
########################################
# To run this demo using py-amqplib,
# uncomment this block, and comment out
# the next block.
########################################
#from amqplib_client import *
#publisher = PyAmqpLibPublisher(exchange_name="my_exchange")
########################################
# To run this demo using pika,
# uncomment this block, and comment out
# the previous block
########################################
from pika_client import *
publisher = PikaPublisher(exchange_name="my_exchange")
########################################
# This part doesn't have to change
########################################
from buy_low_sell_high import *
buyer = Buyer(publisher, "", trend=25)
print "Buyer = %s" % id(buyer)
buyer.monitor()
在未来的博客文章中,我们可以考虑使用 Pythonic 的 DI 容器来运行相同的代码。